

You can draw here

You can draw here

Reminders/Announcements

- Bonus Test 1 starts today from 6PM Saturday at 6 PM - (might be slightly delayed)
- patient)
- work on it in advance
- for discussion

- For questions about grading Test 1, contact Tutorial TA on Piazza (be

- Homework05 and Homework06 has been released if you want to

- Will post a Piazza message about some feedback I've received - up

Reminders/Announcements

Homework (due Wed 6 pm)

Week 1

Week 2

Week 3

Week 4 (this week!)

Week 5

HW01 - Intro to Mastering Physics (not for marks)

_

HW02 - Chapter 2 HW03 - Chapter 3

HW04 - Chapter 4

Test/Bonus Test (Thurs 6pm - Sat 6pm)

_

Learning Log (Fri 6pm)

Test 0 (not for marks)

Learning Log 1 (yes for marks!)

Test 1 (on Chapters 2 & 3)

Learning Log 2

Bonus Test 1

Learning Log 3

Summary of comments from Homework 4 (Chapter 4)

- Relative motion: annoying but okay.
- Circular motion is straight forward.
- ω and α : angular velocity and angular acceleration
- Getting lost in formulas...
- What **IS** angular velocity?
- Direction of pendulum acceleration (!!!)

Taking a step back this week...

Students Completed

Summary of comments from Homework 4 (Chapter 4)

- Relative motion: annoying but okay.
- Circular motion is straight forward
- ω and α : angular velocity and angular acceleration
- Getting lost in formulas
- What **IS** angular velocity?
- Direction of pendulum acceleration (!!!)

"Quote of the week" QOTW

"The tilted axis questions had me sweating; I would say that I found those the most confusing."

Why do we need angular velocity?

Why do we need angular velocity?

Angular Position

- Consider a particle at a distance
 r from the origin, at an angle θ
 from the positive *x*-axis.
- The angle may be measured in degrees, revolutions (rev) or radians (rad), that are related by:

 $1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}$

If the angle is measured in radians, then there is a simple relation between θ and the arc length s that the particle travels along the edge of a circle of radius r:

 $s = r\theta$

(with θ in rad)

Slide 4-75

Angular Velocity

- A particle on a circular path moves through an **angular displacement** $\Delta \theta = \theta_{\rm f} - \theta_{\rm i}$ in a time interval $\Delta t = t_{\rm f} - t_{\rm i}$.
- In analogy with linear motion, we define

average angular velocity $\equiv \frac{\Delta\theta}{\Delta t}$

• As the time interval Δt becomes very small, we arrive at the definition of instantaneous **angular velocity:** $\Delta \theta = d\theta$

 $\omega \equiv \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt} \qquad (\text{angular velocity})$

Direction of Pendulum Acceleration

Direction of Pendulum Acceleration

Through the valley EXAMPLE 4.2

VISUALIZE FIGURE 4.4 is the motion diagram. Where the particle moves along a *straight line*, it speeds up if \vec{a} and \vec{v} point in the same direction and slows down if \vec{a} and \vec{v} point in opposite

directions. This important idea was the basis for the onedimensional kinematics we developed in Chapter 2. When the direction of \vec{v} changes, as it does when the ball goes through the valley, we need to use vector subtraction to find the direction of $\Delta \vec{v}$ and thus of \vec{a} . The procedure is shown at two points in the motion diagram.

Chapter 4 Clicker Questions

© 2017 Pearson Education, Inc.

L4.Q1 - QuickCheck 4.4

Projectiles 1 and 2 are launched over level ground with the same speed but at different angles. Which hits the ground first? Ignore air resistance.

- A. Projectile 1 hits first.
- B. Projectile 2 hits first.
- C. They hit at the same time.
- D. There's not enough information to tell.

L4.Q1 - QuickCheck 4.4

Projectiles 1 and 2 are launched over level ground with the same speed but at different angles. Which hits the ground first? Ignore air resistance.

- A. Projectile 1 hits first.
- B. Projectile 2 hits first.
- C. They hit at the same time.
- D. There's not enough information to tell.

L4.Q2 - QuickCheck 4.5

Projectiles 1 and 2 are launched over level ground with different speeds. Both reach the same height. Which hits the ground first? Ignore air resistance.

- A. Projectile 1 hits first.
- B. Projectile 2 hits first.
- C. They hit at the same time.
- D. There's not enough information to tell.

L4.Q2 - QuickCheck 4.5

Projectiles 1 and 2 are launched over level ground with different speeds. Both reach the same height. Which hits the ground first? Ignore air resistance.

- A. Projectile 1 hits first.
- B. Projectile 2 hits first.
- C. They hit at the same time.
- D. There's not enough information to tell.

L4.Q3 - QuickCheck 4.7

This is the angular velocity graph of a wheel. How many revolutions does the wheel make in the first 4 s? ω (rev/s)

- A. 1
- B. 2
- C. 4
- D. 6E. 8

L4.Q3 - QuickCheck 4.7

This is the angular velocity graph of a wheel. How many revolutions does the wheel make in the first 4 s? ω (rev/s)

L4.Q4A - QuickCheck 4.12

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's angular velocity is that of Rasheed.

- half Α.
- the same as B.
- twice C.
- four times D.
- We can't say without knowing their radii. E.

L4.Q4B - QuickCheck 4.13

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's speed is that of Rasheed.

- half Α.
- Β. the same as
- twice C.
- four times D.
- We can't say without knowing their radii. E.

L4.Q4C - QuickCheck 4.14

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's acceleration is that of Rasheed.

- half Α.
- B. the same as
- twice C
- four times \square
- We can't say without knowing their radii. E.

L4.Q4A - QuickCheck 4.12

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's angular velocity is that of Rasheed.

half Α.

Β. the same as

- twice
- four times D.
- We can't say without knowing their radii. E.

L4.Q4B - QuickCheck 4.13

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's speed is that of Rasheed.

- half Α.
- Β. the same as

C. twice

 $v = \omega r$

- four times D.
- We can't say without knowing their radii. E.

L4.Q4C - QuickCheck 4.14

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's acceleration is that of Rasheed.

- half Α.
- Β. the same as

twice

- four times
- We can't say without knowing their radii. E.

Chapter 4 Important Concepts

© 2017 Pearson Education, Inc.

Kinematics in two dimensions

If \vec{a} is constant, then the x- and y-components of motion are independent of each other.

$$x_{f} = x_{i} + v_{ix} \Delta t + \frac{1}{2}a_{x}(x_{f})$$
$$y_{f} = y_{i} + v_{iy} \Delta t + \frac{1}{2}a_{y}(x_{f})$$
$$v_{fx} = v_{ix} + a_{x} \Delta t$$
$$v_{fy} = v_{iy} + a_{y} \Delta t$$

$$(\Delta t)^2$$

 $(\Delta t)^2$

Circular motion kinematics

Circular motion graphs and kinematics are analogous to linear motion with constant acceleration.

Angle, angular velocity, and angular acceleration are related graphically.

- The angular velocity is the slope of the angular position graph.
- The angular acceleration is the slope of the angular velocity graph.

The instantaneous velocity

$$\vec{v} = d\vec{r}/dt$$

is a vector tangent to the trajectory. The instantaneous acceleration is

$$\vec{a} = d\vec{v}/dt$$

 \vec{a}_{\parallel} , the component of \vec{a} parallel to \vec{v} , is responsible for change of speed. \vec{a}_{\perp} , the component of \vec{a} perpendicular to \vec{v} , is responsible for change of direction.

Relative Motion

If object C moves relative to reference frame A with velocity \vec{v}_{CA} , then it moves relative to a different reference frame B with velocity

$$\vec{v}_{\rm CB} = \vec{v}_{\rm CA} + \vec{v}_{\rm AB}$$

where \vec{v}_{AB} is the velocity of A relative to B. This is the Galilean transformation of velocity.

Uniform Circular Motion

Angular velocity $\omega = d\theta/dt$.

 v_t and ω are constant:

 $v_t = \omega r$

The centripetal acceleration points toward the center of the circle:

$$a = \frac{v^2}{r} = \omega^2 r$$

It changes the particle's direction but not its speed.

Circular motion kinematics

Period
$$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$$

Angular position $\theta = \frac{s}{r}$

Constant angular acceleration

$$\omega_{\rm f} = \omega_{\rm i} + \alpha \,\Delta t$$

$$\theta_{\rm f} = \theta_{\rm i} + \omega_{\rm i} \,\Delta t + \frac{1}{2} \alpha (\Delta t)^2$$

$$\omega_{\rm f}^2 = \omega_{\rm i}^2 + 2\alpha \,\Delta \theta$$

© 2017 Pearson Education, Inc.

Nonuniform Circular Motion

Angular acceleration $\alpha = d\omega/dt$. The radial acceleration

$$a_r = \frac{v^2}{r} = \omega^2 r$$

changes the particle's direction. The tangential component

$$a_t = \alpha r$$

changes the particle's speed.

© 2017 Pearson Education, Inc.

Projectile motion is motion under the influence of only gravity.

MODEL Model as a particle launched with speed v_0 at angle θ .

VISUALIZE Use coordinates with the x-axis horizontal and the y-axis vertical.

SOLVE The horizontal motion is uniform with $v_x = v_0 \cos \theta$. The vertical motion is free fall with $a_y = -g$. The x and y kinematic equations have the same value for Δt .

